
Conformal covariance in the framework of Wilson's renormalization group approach

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1976 J. Phys. A: Math. Gen. 9 377

(http://iopscience.iop.org/0305-4470/9/3/008)

Download details:

IP Address: 171.66.16.88

The article was downloaded on 02/06/2010 at 05:15

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/9/3
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience
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m d  We construct a conformal operator in analogy to the generating operator of 
-son’s incomplete-integration renormalization group. The invariance of the partition 
function with respect to that conformal operation yields identities among the cumdank. 
Evaluating these identities we find a generalized and corrected form of the selection rule 
which determines those two-point cumulants which show a long-range tail. A general 
equation which governs the asymptotic form of the three-point cumulants is established. It 
is solved for several examples which involve operators of vector- or tensor-type. It is found 
that surface effects cannot be excluded ~ p r i o r i .  However, the asymptotic expressionsfor the 
cumulants are consistent with a neglect of surface effects. 

Near the critical temperature of a second-order phase transition, the fluctuations of 
quantities become correlated over distances which are large on a microscopic 

de. This property is explained by the renormalization group approach, which shows 
!latatthe cumulants (.rr,Ai(spi)), of fluctuating quantities (‘operators’) Ai(pi), which are 
bealhed at the points pi, behave asymptotically as 

he i exponent xi of the operator Ai ( p )  can be calculated within the renormaliza- 
group approach. The physical idea underlying that theory can be formulated as 

a h h n  covariance of the system. 
Be coefficient C, ,.,., ,(pl, . . . , p,) can be studied by exploiting conformal 

*ce. Using the framework of field theory, Polyakoff (1970) has argued that for 
mhd hvariant operators, conformal covariance fixes the form of the three-point 
rpmnlant: 

(1.2) I P 2  -P31x2+x3-xllp - (x3+x1-x2. c ~ b l l  p2, ~ 3 )  = r1,2,31P1 -p21xl+x2-x3 3 P1 

flererwdenotes a constant. For cumulants which involve more than three operators 
‘barestriction on the form of C, ,..., ,(pl,. . . , p,). For two-point cumulants a 
* d e  has been proposed (Fisher 1973): 

(1.3) CI,2(Pl, P2)  = 0 unless x1 = x2. e k s c h e  Forschungs-Gemeinschaft. On leave from the Institut fur Theoretische Physik der 
Heidelberg, Germany (present address). 
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378 L SchZfer 

Recently Wolsky and Green (1974) and Wolsky er a1 (1973) have *h 
connection between conformal and dilatation covariance within the frameWorltd 
classical statistical mechanics. 

In this paper we study conformal convariance within the framework of wws 
renormalization group approach (Wilson and Kogut 1974). Our motivation is twda 
We want to give a fairly complete discussion of the implications of conformal 
which involve eigen-operators of the linearized renormalization group equation. we 
are led to extend the analysis to operators which have arbitrary tensor propertia uoder 
spatial rotations. Even for scalar operators we find corrections to the simpleresdb(1.2) 
and (1.3). Our second purpose is to formulate the conditions which fie fixed poim 
Hamiltonian of the renormalization group must satisfy if conformal covariance is to 
hold. 

The idea of our approach is simple. It has been shown (Wegner 1974) thatwis 
renormalization group operator can be constructed by a transformation of v&leSi,, 
the functional integral which defines the partition function Z[W of the HamiltoniaH: 
An important ingredient of this transformation is I dilatation in r space. We amma 
conformal operator K along the same lines, substituting the infinitesimal dilabtimh 
an infinitesimal conformal transformation. By construction, the generating fun- 
in aH+BaJi (p i ) ]  of the cumulants is invariant with respect to K. This yiekk 
identities among cumulants involving K[KJ and K[Ai(p)]. We expand K[HJ ad 
KEA,@)] With respect to eigen-operators of the linearized renormalition group 
equation, and we evaluate all terms of the identities using the asymptotic behaviour 
(1.1). In this way we establish relations among the coefficients Cl,...,n(pl,. . . , p,,),which 
can be evaluated. Our treatment is formal, since we do not discuss convergence 
problems, and we will freely interchange limiting processes. 

In 0 2 we establish our notation and formulate the model. We give the scalingform 
of the cumulants in ordinary ( r )  space, which follows from the renormalization group 
equation. 

In 0 3 we construct the conformal operator K, and evaluate K[B] for short-range 
operators 0. The implications for the cumulants are evaluated in 0 4, which 
our main results. Some details are given in the appendix. In 0 5 we study surfaceeff& 
and 0 6 contains a summary. 

2. Results of the renormalization group approach 

2.1. The model 

We consider a real classical spin field Sp(r), (Y = 1, . . . , n, defined in d dimensional' 
space. In the following we omit the spin indices, since they are of no importanceforom 
discussion. The Hamiltonian is written as a functional of S(r):  

" 1  m 

m=O nt. j=l  
NS]= ddrl . . . ddrm S(rj)h(rl,. . . , r,). (2.1) 

The first term (m = 0) is understood to be a numerical constant. The intepdOu.?: 
summation over spin indices. Since we confine ourselves to the infinite v O l ~ e m '  
assume translational invariance: 

h ( r l , .  . . , rm)=h(O, rz-rl,. . . , rm-rl). 
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t lgefonodg we omit the dimension d at the differentials. Translational invariant 
+operators A ( p )  are defined by 

(2.3) 
m " 1  

A(p)[SI= m=O C -1 m! dr1. e - drm j =  II 1 S($)a(p, 11,. . . , r m )  

(2.4) 

~!grnel.s h h ,  . . , rm) and a b ,  r1,. . . r m )  are symmetric under permutation of 
b . . . ~ ~ } .  The partition function ZCW is defined as a functional integral over the 
U Sk): 

22 % renormalization group operator? 

wdformof the generating operator R of the renormalization group for this model 
bbeengiven by Wilson and Kogut (1974). Wegner (1974) has shown how R can be 
med by a transformation of variables in the functional integral (2.5). Since in 9 3 
a m c t  a conformal operator along the same lines, we here quote the results for 
flqwithout further comments: 

flfi=I dr{ -$ dS(r) - ( r .  V$(r) )  +[(b -2Ar)S(r)l) -+ dr(b - 2AJ 
SH 

SS(r) 

ke Vx and Ax denote gradient and Laplacian in d dimensional space acting on the 
rpiable x and b is a numerical parameter. By construction R satisfies the equation 

&(divergent) constant C is independent of H, and cancels in the expressions for the 
mnelation functions. 

Forlater use we introduce the notation 

ancl are operators of the type (2.1) or (2.3). 
Iheked point Hamiltonian Hx is defined as a solution of the renormalization 

80$ equation 

WP] = c, (2.9) 
hwe~IOWfor an arbitrary constant C,. on the right-hand side. We introduce the 

t R k ~ ~ ~ l y t r a n s f o m  the results of Wilson and Kogut (1974,s XI) to r space, which is more suitable 
b'3$pnrpose. 
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m d  
Scaling fields g (Wegner 1972), which are curvilinear coordinates in 
Hamiltonians. They have the property 

The curly bracket indicates that H{g) depends on the sequence {g,, g,, . . .}. 
Cpt has been added to allow for the choice 

(2.10) e%{g} = H{gi eyL'}+ Cpt .  

(2.11) H(0) = P. 

gi 
Differentiating equation (2.10) first with respect to t at t = 0, and then withreswb 
we find 

We have introduced the linearized renormalization group operator 

(2.12) 

(2.13) 

(2.14) 

At the fixed point equation (2.12) yields 

R303 = y,p: (2.13 
where we use an asterisk to denote quantities which are evaluated at {gi = 0). We call 
Oi(g} a (not localized) eigen-operator of R?). Localized eigen-operators Aj(p, {g}) are 
defined by the equations 

( 2 3 )  a 
RfTAj(p, {gI)I= ( X j  +C i Y,gi--pVp)Aj(p,  agi {g)) 

R:CA:(p)l= (xj -pV,,)AT(p). (2.17) 

We confine ourselves to fixed points which have the following properh 
(Ri) The kernels of H* and of all eigen-operators 67, AT(p) are of short rangell.e- 

they vanish at least exponentially if the distance between any two arguments ri? rjOrrnp 

tends to infinity. 
(Rii) The kernels of H* are invariant both with respect to rotations in r spaceaod 

with respect to a reflection at r = 0. 
(Riii) There exists a real number M with the property 

. 

M>Re xi for all i (2.181 

where Re x denotes the real part of X. 

Property (i) will be at the basis of most arguments used in that paper. BY virtue Of 
property (ii) the operator RL commutes with rotations and point refledom. we 
therefore can choose the kernels of 6$ and AT(p) to have definite tensor Pro?& 
(parity) with respect to rotations (reflections) centred at r = 0 or at r = P, resPav" 
TO begin with we will assume the existence of complete sets of eigen-@lutiomd 
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(2.15) and (2.17). In 8 4.3 we generalize our treatment to include the case 
rlae R; is of the Jordan normal form: 

Rz[A:n(p)] = ( X i  - ~ V p ) A ? n ( p )  +A:n-, (p)  
A$b) = 0 for n < 0. (2.19) 

- n a g  equations hold for Of,,. Finally we will argue that our treatment does 
rrlrery on fie completeness assumptions. 

?3. "protic form of the cumulants 

tapply &e operator R to the Hamiltonian 
n 

H{g, a) = H g }  + a Il Ai (P i 9 k>>- (2.20) 
i l l  

C yields 

R[H(g,a]]=R[H{dl+a n Aj(pj, k})Rp'[Ai(pi> {d)l+2a n A k ( P k ,  
i = l  j # i  i < j  k#i , j  

x i ~ i ( ~ i 7  {g})IAj(pj,  {g }>}+  0(a2>- (2.21) 
Wwbstitute these expressions into equation (2.7), and we differentiate with respect to 
thingequations (2.10) and (2.16) we find (compare Wegner 1975, equation (5.20)) 

(2.22) 

he (. . .)(g' denotes the expectation value with respect to H{g}. We transform 
Won (2.22) into a differential equation in t: 

i = l  

(2.23) 

(2.24) 

%% and changing some notation we find an identity for the disconnected 
mhon functions: 

(2.25) 
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with s > 0, arbitrary. We have introduced the notation 

w gr(s) = gp-y'. 

Equation (2.25) implies that (A?(p))* vanishes unless xi  = 0. ( ~ ~ k  that the 
resatt expectation values are translational invariant.) For operators with Re xi <o 

is easily extended to the whole critical surface which is defined by the relation 

( 2 3  gf = O  if yl >O. 

For the two- and three-point cumulants equation (2.25) yields identities whichf- 
may be found by substituting all expectation values by the cumulant average (. . J, 

At {gi = 0) the integrands which occur in equation (2.25) are assumed t o ~ o f s ~  
range in z, provided that all points pi are distinct. TO justify this assumption we 
that the operator {A?(piz)(AT(pjz)} which 0ccurs in the integrands, has kern&% 
decrease exponentially with increasing Ipi-pjlz. AS a function of s the 
therefore are taken to equal a constant (which is equal to the value at s =CO) plus a 
short-range term (sHR(s)). In order to extend our analysis to a neighbourhoodofb 
fixed point we furthermore assume that the additional z dependence due to{a(z)}Qes 
not spoil the exponential decrease of the integrands. As a consequence the c u m h 6  
show scaling behaviour (Fisher 1973, equation (52)): 

For physical reasons it is obvious that the cumulants at H* should vanish in the limit 
s+m. This justifies assumption (Riii), and it implies that we can choose M=Oh 
equation (2.18) if we allow for one exception: in view of equations (2.14) and(2.171,a 
numerical constant can be taken to be an eigen-operator with xo = 0. 

We also need the asymptotic form at H* of the cumulants of a product of ON 

non-localized operator with two or three localized operators. From equations (2 .8  
and (2.13) we find by differentiation with respect to gk 

* d * ( f I  AT(Pis)@) = C,...,n;k(Pli . - 9 pn)SYk+X+ f ( AT(p$) -Aj(P+, kJ)IDl)c 
1-1 j=1 i = l  dgk 

i # j  + sHR(s) (2.29) 

We expand dAj(p7 {g})/rol/dgk according to 

(2.30) 

and we use equation (2.28) at H*. This yields 

= c....,<;k(p17 * 9 pn)sykCx 
n (2.31) 

x,+x-x, +E y~kCT....,j-l,Sj+l.n(pl, * * 9 p n ) s  +sHR(s)* 
I j=l 

tiop 
We here have assumed that equation (2.28) can be differentiated at (0). 
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US to calculate (d/dgk)Aj in terms of {AT(p)lc}. We find that -yjk diverges 

Xi -xj  - y k  0 (2.32) 

js possible, but lengthy, to determine the asymptotic behaviour of r%)c): directly at the fixed point. If equation (2.32) holds we find logarithmic 
d o s  in s to the right-hand side of equation (2.31). In the following we will 
rzg)ed complication. 

s d y  if the relation 

f e w f d  operator 

a. Consrncction 

k e I & o n  of the conformal operator closely follows the construction of R given 
bwqer(1974). We define a vector-valued function ul(r, q), such that the mapping 

r+r+q&, q) (3.1) 
kwto-one for small values of 7. For q > 0 u,(r, 7 )  is a smooth function of r, which 
*identically for IrIL 1, The mapping (3.1) induces a change of S ( r ) :  

S(r) + ~ ( r )  + w ( r ,  d V s ( r )  +o(&. (3.2) 
Weinaddition add a function $(r, S) which depends functionally on S, and is specified 
&W: 

S" = S ( r )  + qudr, q ) v m  + q$h, SI. (3.3) 
Wesubstitute S'(r) for S ( r )  in Z [ a .  Obviously H changes according to , 

6H 

hBeformation (3.3) changes the measure of the functional integration. To 
this contribution we confine the system to a finite volume, and we express 

q%amuItiple integral over the discrete set of Fourier components S, of S(r) .  The 
the integration measure II dS, is given by the functional determinant of the 

(Fomier-transformed) transformation (3.3). Using the fact that S ( r )  is real and that 
is to be interpreted as d Re S, d Im S,, we find (compare Wegner 1974, 

e S o a h  (2.6)) 

hv&&!equations (3.4) and (3.5) we find in r space 

z[Hl=zrH]+o(q2) (3.6) 

. .  

'''WO use the defining equations of H* and AT(p) to evaluate the result of the 
transformation. We therefore choose $(r ,S)  in such a way that for? 

Waking, is forbidden by q ( r ,  9) = 0 for Irl* l. 
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u,(r, 7) = r we recover the renormalization group operator. The foiloh 
proves to be adequate: g-uz 

(3.8) 
The function Al(r, q) is specified below. We substitute the resulting operator IT into 
equation (3.6) and we differentiate with respect to .rl at 7) = 0. This yields 

(3.9) 

The constant CK is infinite. This divergence has no influence on the cumulanb, andwe 
can avoid its occurrence at intermediate steps by using a regularized form of $(r, s). 

u(r) = ar2-2(ar)r (3.11) 

The infinitesimal conformal transformation is defined by 

where a is an arbitrary vector. We define the operator K' by the choice 

u d ~ ;  q) = u(r)Hk(r) (3.12) 

Adr, 7) = A(rM,(r)  (3.13) 

(3.14) 
1 
d 

A(r )  =-div u(r) = -2(ar) 

forIrl<l 
otherwise. 

lim Hk(r)=e(l-lrl)= 
V+O 

For q = 0 this operator describes a conformal mapping in the region 111 < 1. In 8 4 we 
discuss the bulk effects by evaluating the operator K which is found from e q d  
(3.10) by the substitution 

u k ,  0) -* u ( d ,  h(r,  O)+.A(r). (3.16) 

The difference K' - K  (surface effects) is treated in 0 5.  

3.2. Evaluation of K[HJ 

TO evaluate the consequences of equation (3.9) at the fixed point we apply K lo * 
Hamiltonian N* +Ha'A:(pi). We decompose K[Hj according to 

K[H*+C a'AT(Pi)]= K[H*I+C aiKJA:(Pi)]-C cu'a'Ka[AT(p,), A:(Pj)I* (3.17) 

The structure of K L  is completely analogous to that of RL (equation (2.14). ne 'em 
KO is of short range in /pi -pi]. We evaluate KL[A:(p,)] by subtracting e(Ption(z'17) 
multiplied by A b ) .  Similarly we subtract from K [ P ]  an equation based on qua@ 
(2.9). The details may be found in the appendix (0 A.1). We use the invdan@(R@to 
derive the following results. 
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m m 

j =  I i = l  

fi= * 1  c - - / d r  l . . . d rm n S(rj){  [u(ri-R).Vi-2A(ri-R)Ai] 
s-3 m. 

xh*(rl,.. . , r m ) + 5 d r h ( r - R ) ( b - 2 A ~ ) [ h * ( ~ , r , r I , .  . . ,r,,,)- n = O  f (3 

-((b-2Ar)-)--(b-2Ar)]}=. sw sw 
SS(r) SS(r) W) (3.22) 

'IBesuperscript {a) = {al, . . . , a,) represent the tensor indices of A:(p). The contribu- 
bSgA?(p)] is a localized operator of type (2.3). 

For the subsequent discussion it is important that K[W] and KJA?(p)] are 
"pletelyreduced to translational invariant operators of the type (2.1) or (2.3). we 
&ore note that K ( P ]  is a vector-type operator whereas the tensor-rank of 
eklAfb)] exceeds that of AT(p) by one. To show this we refer to equations (3.11) 
d(3.14), and we note that the vector a is a fixed parameter. Introducing the vector 
Wmts U, of a we write 

(3.23) 

(3.24) 

' * ~ c e s  of conformal covariance 
& . .  

nhahgequation (3.9) with respect to a set of parameters ai of the Hamiltonian 
OVe establish identities which express the response of the cumulants to an 
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infinitesimal conformal transformation. Since a complete characterization of(A lY 
rtpeaios 

is provided by the renormalization group itself (compare the discussion in 
with quation (2.25)), we concentrate on the two- and three-point cumulaa. pvew 
excl&vely at the fixed point, and we therefore omit the superscript. 

To get a better feeling for the structure of this equation, we exhibit the mechanism 
which guarantees the translational invariance. Substituting pi by pf + b we 
folIowing terms, ordered according to powers of b : 

x n %+&, U, ~ ) ( A ~ ? ( P I ) A ~ ~ ~ ( P : ) ) , .  (43) 
Ir 

The contribution proportional to (ab) vanishes by virtue of the renonnalizationgrwp 
equation (compare equation (2.22)). The second part vanishes in view of the tensor 
properties of ~ ? ' ( p ) .  
(iii) bo. These terms yield equation (4.1), written for pi.  In view of the t r d a t i o d  
invariance we simplify equation (4.1) by choosing p1 = 0, p2 = reo, where eo dem@a 
unit vector. Assuming completeness of the sets of eigen-operators we expand 

(4.4) 

SK'[AI"'(p)] = 1 yfAF"'(p). (44 
k 

We combine equations (4.1), (4.4) and (4.5) with the asymptotic form (2.281, (2.31)of 
the cumulants. This yields the basic identity: 

[2r(ue4x2 + r2(a - 2(ae0)eo) . Vleo]@jp'(eO)rx+z 

(4.4 
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bf=y:+E b;&. (4.7) 
1 

d t t e d  all short-range terms, including the expectation value of 
kS A (p2)], and we have indicated at the coefficients C the tensor indices of the 

@I(p3, 2 
bvolved ({h, P)=@,  ai, . , . , a,,, P I , .  . . , PI&, for instance). sn (4.6) is simplified if we choose a = eo. A simple calculation yields 

+E e~[bkds".B}(e4rxk-xl-1 1 t 2  + b ~ e ~ ~ ~ } ( e ~ r x k - x Z - '  I. (4.8) 
k 8  

R&@h two possibilities. 

jjpio~(4.8) at best establishes a connection between C1,2(eO> and C,,,;,(eO>. 
"exists an operator sf' with Y k  = + 1, b i #  0. This is a property of H*. 

@ There exists no such operator. This is the case of interest. 
@I) (xz-xI) is not an integer. 
M g t h a t  Cl,2(eo) does not vanish identically, we conclude that the second sum 

&right-hand side of equation (4.8) contains a non-vanishing term independent of r. 
Wore there exists an operator Ak(p) with the properties 

i = l ,  i = 2  o r i = 2 , i = 1 .  I Xk =x j  + 1 

ci,,(e? # 0 
(4.9) 

hoxding to our assumption x k  - x i  does not vanish, and we can apply the same 
Pgament to Cik(eo). We conclude that there exist non-vanishing eigen-operators with 
tbitrarylarge positive eigenvalues, which contradicts assumption (Riii). Thus Cl,2(eO> 
midies identically. 
0) xz-xl = m, m integer. 
Ibe construction used above, which was based on equation (4.8), terminates 

h e r % ,  and x2 become equal. We therefore discuss the conditions under which the 
leit-band side of the full equation (4.6) vanishes for x1 =x2.  The component of a 
me1 to eo cancels, and we are left with the equation 

(4.10) 

BaeeLdenotes a unit vector orthogonal to eo. We show in the appendix (0 A.2) that a 
@*g solution of this equation has positive parity: 

C(4tH 1.2 ( -e?= +&;'}(+e?. (4.11) 

a ~ e L v l e 0 ~ f } ( e o )  - 2- c n z ~ ~ ~ ~ ( E ,  e l ,  eO)cf ' (eO) = 0. 
ae{B' U 

I tensor 
pseudotensor . nj = [ if A?'(p) is a 

Wek6ne an index zj by 

(4.13) 

(4.14) zj = xj +ti +Ti. 
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For a non-vanishing cumulant, at which the construction of §@a) tern&tqwcfid, 
according to equations (4.11) and (4.1% 

zl - m integer. (4.15) 

Since equation (4.6) couples only operators whose indices zi differ by 2 4  m 
have proved the following selection rule: 

CI;B}(e9 = o 

= tl + T~ - t2- m2 = ti + t2+ mi + r2-2(r2+ ~ 2 )  = 2m, 

m integer. (4.16) 

Equation (4.16) generalizes and corrects the result (1.3). It incorporates 
additional features which are necessary to avoid a contradiction. From equation (217j 
it is obvious that A A i ( p )  is a scalar eigen-operator with the eigenvalue X, -2, pm 
Aj(p) is a scalareigen-operator with the eigenvalue xi. Applyingequation (1.3)~~w 

unless z1 - z2 = 2m, 

0 - {Aj(O)A@i (p)>c = Ap,(Ai(O)Ai (PI>, - G,i (4.17) 

which is wrong in general. Equation (4.16) corrects for this contradictim. 

4.2. Three-point cumulants 

For three-point cumulants we get the following identity: 

a',B'.77 fl ' @ d L ( E ,  a? PZ) nyo-r&(e, a, p 3 1 c . 2 . 3  (PI, P2r p 3 )  
P U 

= b~aS&&~fs)(pl~ p2, p3)syk -1+c  ~ 8 { b f ~ ~ ~ ~ ' @ I 7  PZ, dsxk-'-' 
k S  k S  

+ b k C { a . S B , y }  

+ b k c { a & S Y }  S large. (4.18) 

Straightforward differentiation of equation (3.9) yields a result corresponw to 
equation (4.1). To derive equation (4.18) we substitute pi by pi . S and go to the limitof 
large S. 

As in 0 4.1 (i) the existence of an operator 0, with yk = + 1, b i  # 0, renderseq" 
(4.18) useless. We thus assume (ii) that the first sum on the right-hand side of 
(4.18) does not contribute a term which is independent of S. By virtue Of 
(Riii) we conclude that there exist sets of operators, for which the left-handYded 
equation (4.18) vanishes 

2 l.k.3 (PI, p 2 ,  p 3 ) s x k - q - 1  

3 1.2.k (PI ,  P2r P 3 ) s x k - x 3 - 1 )  

3 

C [2(api)xi + (ap?-2 (a~ i )p i )  . ~ i I & $ ~ ' ( ~ l r  p 2 t  ~ 3 )  
i =  1 

(4.19) 

d * d  If all three operators are scalar, the second term of this equation vanishes, an 
the well known expression (1.2) 

(42N 
c1,2,3(P1, p27 p3) = r~,2.31p121A12'31p13~A13'2~~23~Az3'1 
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lpjjl=Ipi-pjl; hi,, = Xi + X j  - Xk. (4.21) 

(4.19) covers the general case. Some examples are given in the appendix 

wbon (4.18) again allows for a coupling of an operator Ai(p) to an operator 
xk = x i  + 1. From this equation we can evaluate the asymptotic form of the 

d~, provided we know the spectrum of RL and the tensor properties of the 
emtors. To give an example we have calculated c1,2&1, p2, p3) under the 
&nsthat the Ai(pi), i = 1,2,3, are scalar operators, and that only Al(p) couples 
ptwr operator A,(p), which in turn is coupled to a scalar A&). We find 

w 
ijA31. 

(4.22) 

Wtmuplingonly the first term survives. Again the coupling terms are necessary to 
mthe case of derivatives with respect to pi. From our examples we expect that the 
@form of the three-point cumulant is 

(4.23) 

&rep(. . .) denotes a ratio of two finite polynomials which incorporates the tensor 
pupdies and the coupling structure. 

43. I a r h  normal form 

Webave repeated the argument of the previous sections under the weaker assumption 
bt RL can be reduced completely to the form (2.19). The new feature is the 
meace of logarithmic corrections to equation (2.26). The two-point cumulant at 
hqforhtance, has the structure 

(4.24) 

lBeElectionrule (4.16) remains unchanged. We have found no general restriction for 
tlrdependeneof Cx,.pl,x2,p2(eo) on pl, p2. For any concrete case, however, restrictions 
Bhworked out by substituting equation (4.24) into the identity (4.1). Since no new 
-koerai have emerged from the discussion of the two-point cumulants, we 
'OYned a discussion of the three-point cumulants, where one expects logarithmic 
QmonstO the behaviour (4.23). 

'-e&?& 

i'4wehave neglected the difference between K' and K. The discussion, given there, 
Provided that in the limit of large 1 (K' - K) does not create contributions 

(4.6) or (4.18) which behave like rx1+x2t1 or So, respectively. We here 
bthis Problem in some more detail. 
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A typical term of KXA,(p)]  - KJAi(p)]  reads 

" 1  - C - ,f, dr, . . . dr, n S(r j )d ( l r i / - l )u ( r i ) .  Viai(p,  rl, . . . , rm). 
m! i= i (5.1) 

" 1  
A=lz C - m! f dr, . . .drm 1'1 fi S(r j ) (a  .?)6(l-lri/)h*(rl,. ri I . . , r,,,). ( 5 4  

This term arises from the partial integration of? 

(compare equation (A.4)). We define the localized operator K * ( p )  by the kernels 

l m  
m i = l  

h*(p, r , ,  . . . , I,,,) =- C S(ri -p )h*( r , , .  . . , rm) 

and we expand P ( p )  according to 

K*(P) = C CiAi (P). 

(5.4) 

(55)  
Equation (5.2) transforms into 

A = Id" ci dSZ,(ae,)A,(le,). (5.6) I 
Here dSZp denotes the integration over the direction of the unit vector e, in d 
dimensional space. This terms yields the following contribution to the identity fortbe 
two-point cumulants: 

(A1(0)A2(re%)c 

= Id+' C Ci [ d~,(~~,)(A~(0)Az(~~O)Ai(le,))c 
i 

= C i r ~ l + ~ 2 + ~ i + d + l  d+l  (5.71 A 5 df&(aeP)CC1.2,i(0, eo, he,) f . . .I 
i 

A = r-'L (5.81 

We have used equation (2.28). The terms omitted in equation (5.7) are ofshor tw 
either in r or in. A, as is shown by equation (2.24). 

term d The discussion of 8 4.1 becomes valid if in the limit A + a3 there s u d ' s  a 
& e& e¶uation (5.7) with xi = - d. Local operators with this eigenvalue in general 

(compare Wegner 1972, 0 VII, and references given therein). We have fotz 
satisfactory argument which excludes a contribution of eqUatiOR (5.7) in & I m t b  

t The term (5.2) is cancelled if we subtract a term a I*H;(r) in the definition (3.12). Othertema 
remain, however, and we therefore have decided to illustrate the surface effects by thisimPlemomWm 

in&gr: 
. 
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offer some consistency considerations. We use the expressions for C, ,2,i, B@ from conformal "km to determine the A dependence in equa- 
1- &(5.7). Assuming that Al(p), A h )  and A h )  are scalar, and that none of these 
woperators couples to an operator Ak(p) with x k  = xi + 1, i = 1 , 2  or x k  = - d + 1, 
*find from equation (4.20) 

(5.9) 
%yields 

Cl,2,i(0, eo, he,) =constant X A-2d +O(h-2d-1). 

ap(mp)C1.2,i(0, eo, 

=constant X A-dc1 dfip(aep)+O(h-d) =O(hhd) + 0. (5.10) 
.A+- 

memeresult holds in all cases for which we have calculated C1,2.p If Ai(p) is coupled 
"operator Ak(p) we have to use assumption (Riii) with M = 0: x k  should be strictly 
ggative. 

Asmewhat lengthy discussion of the other terms of K'[K*] -K[H*]  yields similar 
&. 

Wehave evaluated the consequences of conformal covariance for a fixed point with the 
krIlowing properties. 

(Ri) All operators which occur, are of short range. 
(Rii) K* is invariant with respect to rotations in r space and with respect to 

(Riii) The spectrum of RL is bounded from above. 
M o n s  at r = 0. 

" m p t i o n s  (Ri) and (Rii) the identities (4.6) and (4.18) hold, possibly corrected 
hacontribution of the surface effects. Besides (Riii), two additional conditions have 
Qbfulfilled if we want to draw useful conclusions from these identities. 

(Ki) The conformal operator K applied to K* does not create a contribution with 
eigenvalue y = + 1. 
(Ki) If the radius of the conformally distorted sphere tends to infinity, any 

dangerau contribution of the surface effects vanishes. 
For such a conformally covariant fixed point we have evaluated the identities 

5 g  that the linearized renormalization group operator has a complete set of 
WWrators. A generalization to the Jordan normal form proved to be possible. 
Rerewe want to point out that we do not use the full power of that assumption, but that 
amconditions are sufficient. 

There exists a number N >  0 such that the part of the spectrum of RL in the 
Re X > - N  consists of isolated points with finite geometric multiplicity. 

. A cuulant, which besides some eigen-operators A?(p), Re xi > -N,  
wes One operator A&) from the other part of the spectrum, is asymptotically 

bY 

' C '  

kJad(KiV) hold, our results are valid for cumulants of operators with eigenvalues 
'thehall-plane Re x > - N, and this may cover all cases of interest. 
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Evaluating the identities (4.6) and (4.18) we were able to extend the pev 

em established results to operators of arbitrary spatial tensor properties. We fw 
corrected for some inconsistency in the previous results which failed to Prda Ibe 
mnect asymptotic behaviour of cumulants involving spatial derivatives. our discPS. 
sion has confirmed that conformal covariance provides US with a selection rule 
determines those two-point cumulants which show a long-range tail. Fmbemorea 
fixes the asymptotic form of the three-point cumulants. To apply the latter resatoa 
given cumulant (IIA:(pi))T we have to know the spectrum of RL in the ha-pl, 
R e x a I n f R e x , + l .  

AI1 these results concern cumulants at the fixed point. An extension of these 
methods to an arbitrary point on the critical surface is not possible, since the Opentag 
applied to a Hamiltonian H f K* creates non-translational invariant anb jUt i iom 
The corresponding identities only connect CI ...., ,,(PI, . . . , Pm {g}) to quantitieswih 
physical interest. Conformal covariance therefore yields useful results only on 
leading term of an expansion of Cl , . . . ,n (~~ ,  . . . , P”, {g} )  in powers Of (8). 

We finally want to comment on the special role of the conformal transformah in 
the context of our treatment. We may set up identities of the type (4.1) for a b i g v h q  
of functions u(r).  The special benefits of the conformal transformation are that ityieh 
operators K[H*] and GKJAF(p)] which are translational invariant, and which there- 
fore are contained in the initial set of operators. This Will not happen in general, andthe 
corresponding identities are useless since they involve unphysical operators. 
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Appendix 

A.]. Evaluation ofK[H*] and KL[Af(p)] 

we evaluate K[H*], using for K* the explicit form (2.1). This yields (compaeeguarioa 
(3.10)): 

1 

“ 1  
X h*(r,, . . . , rm)+ 

X ( b  - 2 4 ) [  h*(x, r l ,  . . . , r,) 

7 [ drl . . , dr, fi S(ri) I drA ( r )  
m. j=1 
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to definition (2.6) R[*1 results from K i p ]  by the substitution u(r)+r ,  
evaluate the mth functional derivative of equation (2.9) which defines H* : 18) 

= f [$+riVi+(b-2Ai)]h*(rl,. . . , r,) 
i = l  

%last sum ranges over all partitionings of the set (1, . . . , m) into subsets &,. . . . , in )  
d(j,+l,. . . , jm) .  We multiply equation (A.2) by 

Iptcgrate, and sum over m. The result is subtracted from equation (A.1). This yields 

m 

m. j = 1  

Ck[H*] is of no interest. Note that equation (A.4) holds independently of 
'*aIfOmof u(r)  or h(r).  In 8 5 we therefore take this equation as.a startingpoint 
'na'uteK'[H*]-K[H*], by substituting u(r)+ u~(r, 0)- u(r) ,  A ( r ) + M + ,  o)-A(r). 
'I !e explicit expressions (3.12) and (3.15) some straightforward algebra yields 
?On (3.18). The contributions with m = 1 and m = 2 vanish by virtue of transla- 

and reflection invariance of H* . 
Toevaluate KJA:(p)] we subtract an expression based on equation (2.17): 

' ' tb)~-(xi l (p)-u(p)  . v,,)A:(p) 

=K.[A?(~)l -A(p)RZ[A?(p)l+(u(p)  -Ab)p) vd:(p). (A.5) 
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Using the definitions (2.14) and the corresponding expression for & it is 
ward to derive equation (3.19). In the course Of the calculation there occurs 

2 dr[(a(r--P))p-a((‘-p)p)I.  (v9(~>)-A?(p) 

a term 
s 

W r )  

xVju?(p, rl, . . . , rm)  

which yields the contribution asz[Af(p)]/ac 

(A.6) 

A. 2. Evaluation of equation (4.10) 

Using the tensor properties of &”(eo) we transform equation (4.10): 

We choose a coordinate system in which the I-(2-)direction is given by eo(el). & 
change eo+ -e0 is realized by a rotation R(T)  of the (1,2)-plane with an angle Z. 
Using tensor-space notation we find 

Cl .A - eo) = 0 R (d 0 R - T) Cl .2(eo) 
P U 

where we have used R ( m )  = R(-T). We represent R(T)  in the form 

= C1.2(e0). 

The last result follows by virtue of equation (A.7). 

(A81 

(A101 

A.3. Examples of three-point cumulants 

In solving equation (4.19) we use the ansatz 
d“ B Y}( (A13 

1% p1, p2, p3) = ~ p 1 z ( L \ ~ ~ ~ 3 ~ p 1 3 ~ A ” ~ 2 ~ p 2 ~ ~ A ~ ~ ~ ~ ~ ~ ~ ~ ~ y ~ ~ ~ l ~  P 2 ,  P3). 
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(A. 15) 

(A.16) 

(A. 17) 

Amparison of expressions (A.16) and (A. 17) shows the influence of the rotation Cl in 
rhe simplest case. 
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